

Area Size

6,140 km²

Qualifying Species and Criteria

Fin Whale – *Balaenoptera physalus*

Criterion A

Short-finned Pilot Whale –

Globicephala macrorhynchus

Criterion B (2); C (2)

Gervais' Beaked Whale – *Mesoplodon europaeus*

Criterion B (2)

Sperm Whale – *Physeter macrocephalus*

Criterion A; B (2); C (2)

Common Bottlenose Dolphin – *Tursiops truncatus*

Criterion C (2)

Goose-beaked Whale – *Ziphius cavirostris*

Criterion B (2); C (2)

Criterion D (2) - Marine Mammal Diversity

Balaenoptera acutorostrata, *Balaenoptera physalus*, *Delphinus delphis*, *Globicephala macrorhynchus*, *Grampus griseus*, *Hyperoodon ampullatus*, *Lagenodelphis hosei*, *Megaptera novaeangliae*, *Mesoplodon europaeus*,

Peponocephala electra, *Physeter macrocephalus*, *Pseudorca crassidens*, *Stenella attenuata*, *Stenella clymene*, *Stenella coeruleoalba*, *Stenella frontalis*,

Stenella longirostris, *Steno bredanensis*, *Tursiops truncatus*, *Ziphius cavirostris*

Cape Hatteras Shelf Break Point IMMA

Other Marine Mammal Species Documented

Balaenoptera musculus, *Eubalaena glacialis*, *Feresa attenuata*, *Kogia breviceps*, *Kogia sima*, *Orcinus orca*

Summary

The Cape Hatteras Shelf Break Point extends from the 200 to the 2,500 m isobaths directly seaward of Cape Hatteras, North Carolina, North America. The area includes continental slope, break, and deep waters. Within the IMMA, the southward-flowing waters of Mid-Atlantic Bight collide with the northward-flowing South Atlantic Bight and Gulf Stream. This confluence of currents and complex bathymetry makes the Cape Hatteras Shelf Break Point IMMA a site of high biodiversity and abundance, supporting dense resident and visiting populations of toothed whales. As many as 26 cetacean species occur in the IMMA throughout the year (20 regularly, and 6 consistently but less frequently). The recorded densities of goose-beaked whales (*Ziphius cavirostris*) are among the highest in the world. The area is also well known for its aggregations of sperm whales (*Physeter macrocephalus*) and for providing important feeding habitat for short-finned pilot whales (*Globicephala macrorhynchus*).

Description:

The waters off the coast of Cape Hatteras are oceanographically dynamic and complex. In this region, the Gulf Stream ceases following the continental shelf edge—as it does from Florida up the southeast coast—and begins to flow northeast into pelagic waters (Andres 2016). Additionally, cool, fresh

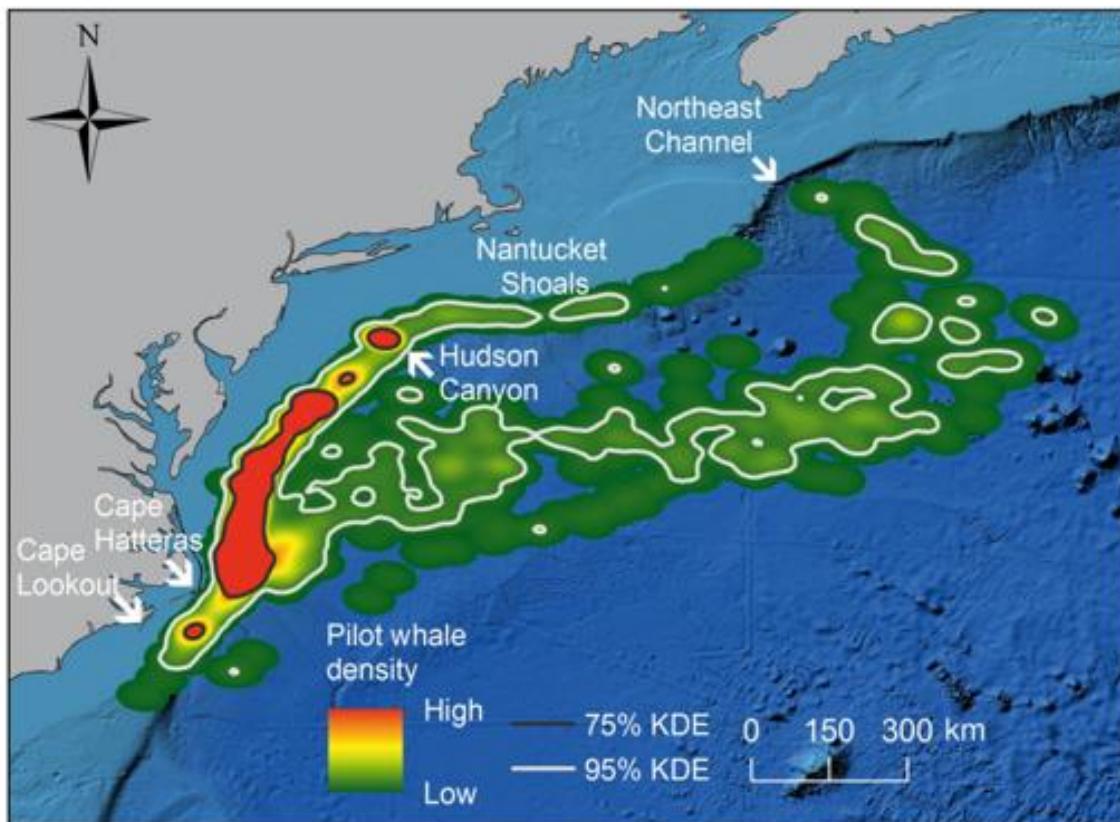
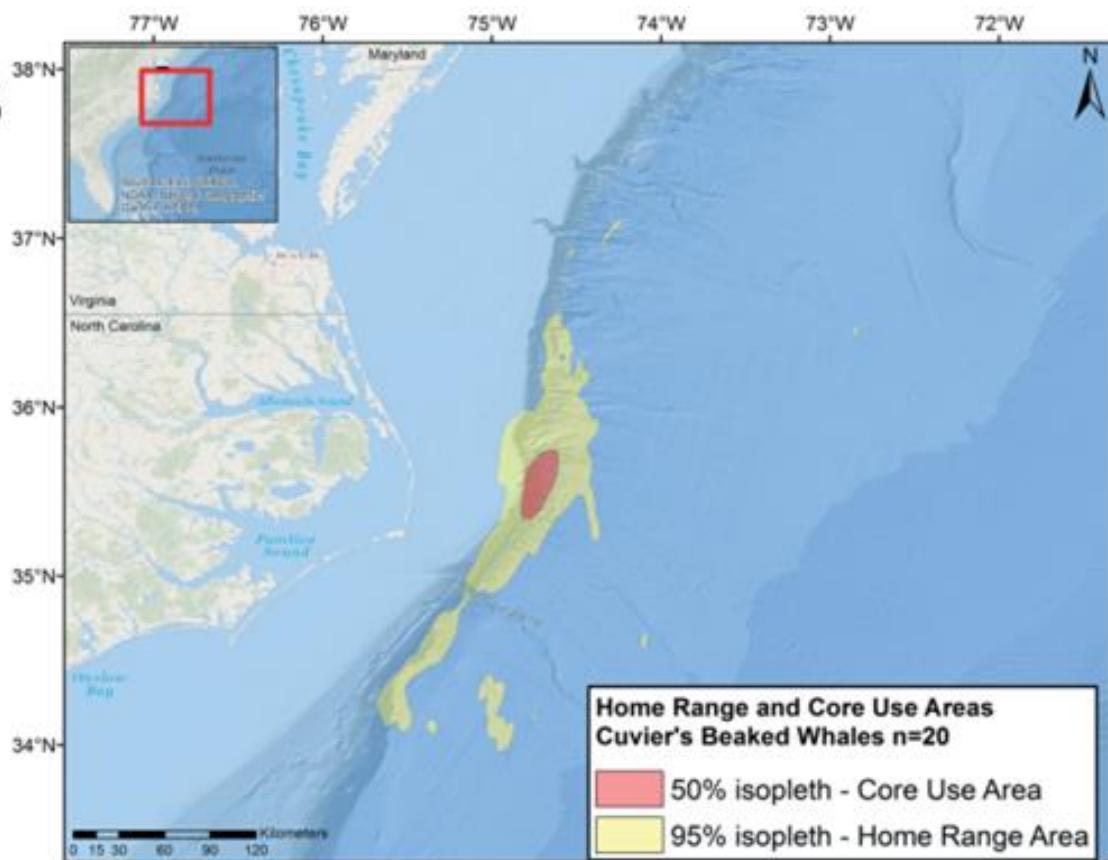


A**B**

Figure 1: Habitat use areas of satellite tagged (A) Short-finned pilot whale (*Globicephala macrorhynchus*) (n=33) and (B) Goose-beaked whale (*Ziphius cavirostris*) (n=20). The core use area for both species overlaps with the Cape Hatteras Shelf Break Point IMMA. Credit: (A) Thorne, L. H., et al. (2017). *Marine Ecology Progress Series*, 584, 245-257. <https://doi.org/10.3354/meps12371>; (B) Foley, H.J., et al. (2021). *Marine Ecology Progress Series*, 660, 203-216. <https://doi.org/10.3354/meps13593>.

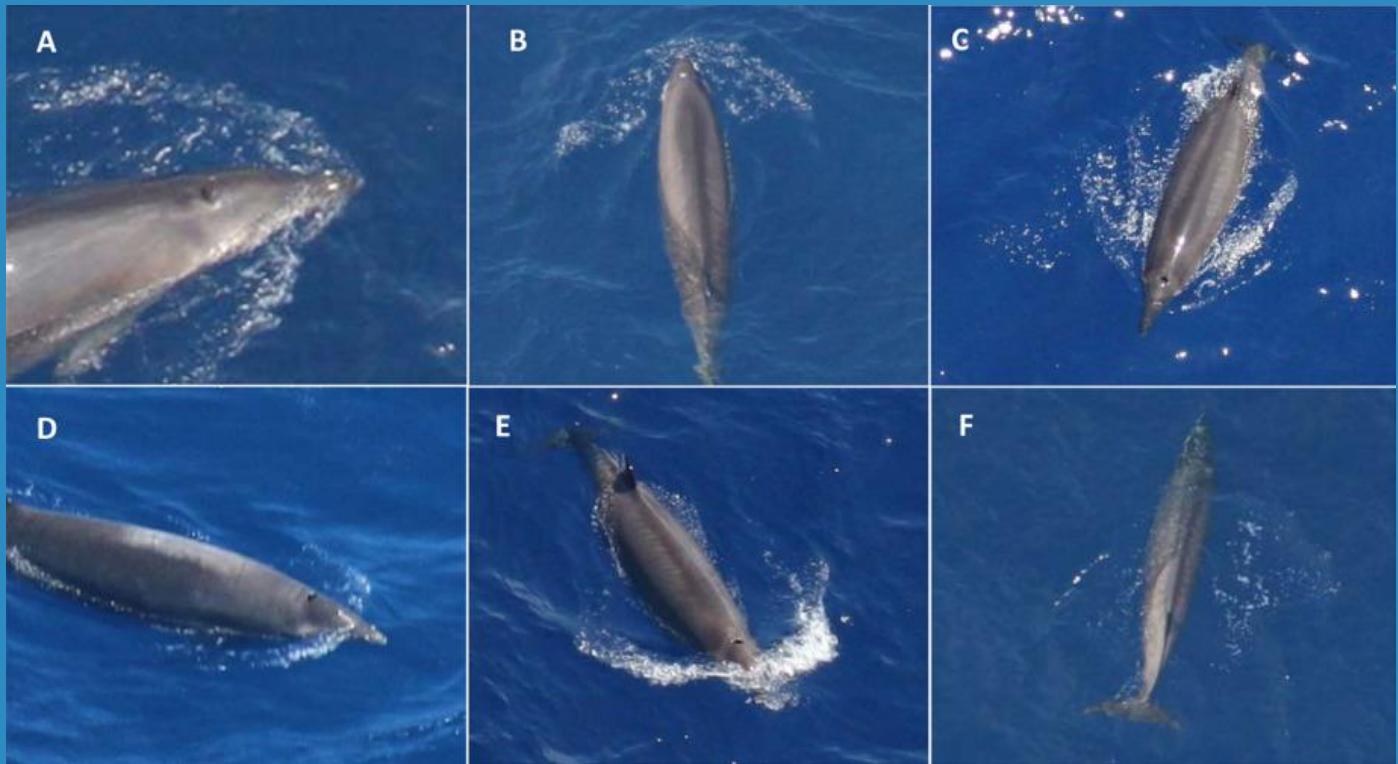


Figure 2: Six Gervais's beaked whale (*Mesoplodon europaeus*) individuals encountered at the shelf break off Cape Hatteras, North Carolina, between May 2011 and November 2015. Excerpt from McClellan, W. A., et al. (2018). *Marine Mammal Science*, 34(4), 997-1017. <https://doi.org/10.1111/mms.12500>.

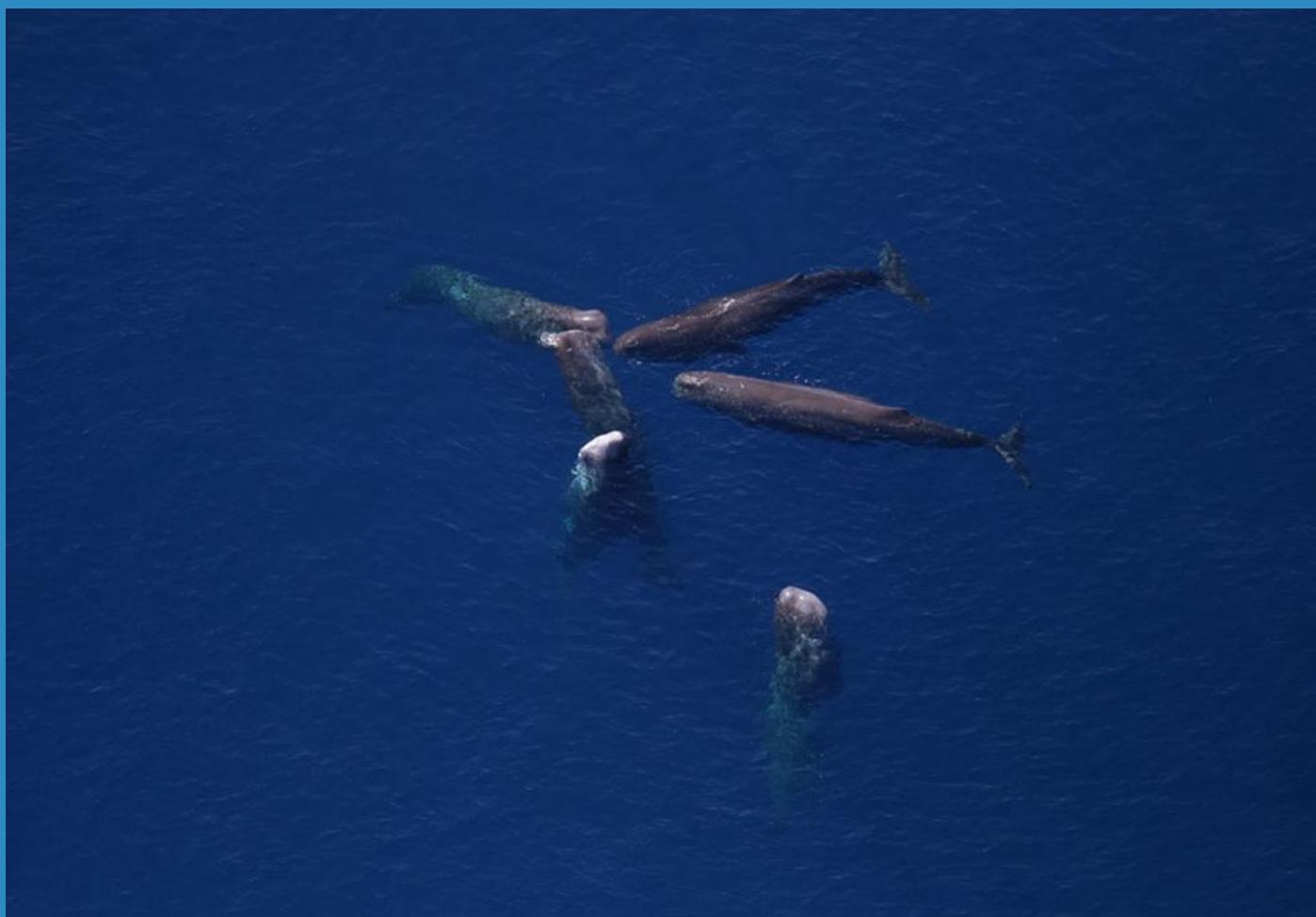


Figure 3: The Cape Hatteras Shelf Break Point IMMA is an important seasonal habitat for sperm whales (*Physeter macrocephalus*). Photo credit: NOAA Fisheries/Tim Cole.

shelf waters flowing southward in the Mid-Atlantic Bight, to meet the warm, salty shelf waters of the South Atlantic Bight (SAB) (Churchill & Gawarkiewicz, 2012). As these two water masses meet and the continental shelf narrows, there is a net export of shelf water offshore (Todd et al., 2020). The Hatteras Front is marked by sharp gradients in temperature and salinity as well as a more gradual density gradient (Savidge & Austin, 2007; Savidge & Savidge, 2014).

Moving southward in the Mid-Atlantic Bight, the continental shelf narrows to approximately 30 km at Cape Hatteras (Rulifson et al., 2020). In this area, the slope is also steep: the depth increases from 200 m to greater than 1,500 m in less than 10 km. Offshore of Cape Hatteras, there are three main submarine canyons—Pamlico, Hatteras, and Keller (Keller Canyon may sometimes also be called Albermarle Canyon; see Gardner et al., 2016). However, little is known about these habitats; past research on east coast canyons has focused predominantly on those between Virginia and New England (Morrison, 2018). In addition to marine mammals, the high productivity and dense prey aggregations of the Cape Hatteras Shelf Break Point supports high relative diversity and abundance of sharks and sturgeons, recreational and commercially important fish species, sea turtles, and seabirds.

Criterion A: Species or Population Vulnerability

The Cape Hatteras Shelf Break Point IMMA represents important foraging habitat for sperm whales (*Physeter macrocephalus*), and fin whales (*Balaenoptera physalus*) are predicted to be present in relatively high densities year-round (Roberts et al., 2016, 2023; Stanistreet et al., 2018). Both of these species are designated as “Vulnerable” by the IUCN Red List (Taylor et al., 2019; Cooke, 2018) and in the

United States, are listed as “Endangered” under the Endangered Species Act and “Depleted” under the Marine Mammal Protection Act.

Criterion B: Distribution and Abundance

Sub-criterion B2: Aggregations

The Cape Hatteras Shelf Break Point is an important habitat for beaked whales, particularly goose-beaked whales (*Ziphius cavirostris* – formerly referred to as Cuvier’s beaked whales). Studies using satellite-linked tags to track goose-beaked whales near Cape Hatteras found that, while the tagged individuals’ ranges stretched from Onslow Bay to the Virginia/Maryland border along the shelf break and slope, the whales spent most of their time in a small, defined core use area just off the shelfbreak east of Cape Hatteras, within the IMMA boundaries (Shearer et al., 2019; Foley et al., 2021). Photographic surveys spotted goose-beaked whales, as well as other beaked whale species (*Mesoplodon* spp.), just offshore of the 1,000 m isobath in this same region in higher densities than have been recorded almost anywhere in the world (McLellan et al., 2018). The Cape Hatteras Shelf Break Point is used year-round by goose-beaked whales and other beaked whale species, including Gervais’s beaked whales (*Mesoplodon europaeus*); whales have been recorded and photographed year-round (Stanistreet et al., 2017; McLellan et al., 2018), and individual animals have been re-sighted across seasons and years (Foley et al., 2021). These research findings align with modelled beaked whale density in the Hatteras area (Roberts et al., 2016, 2023).

The region is also an important foraging habitat for short-finned pilot whales (*Globicephala macrorhynchus*; see, also, Criterion C2), and extremely high densities of this species occur just off the shelfbreak east of within the Cape Hatteras Shelf Break Point (Roberts et al., 2016). Tagged individuals

repeatedly return to this area (Thorne et al., 2017) and sightings have occurred during shipboard sightings across multiple years (NMFS, 2021, 2022, 2023, 2024).

Although the distribution of sperm whales (*Physeter macrocephalus*) is still poorly understood, the Cape Hatteras Shelf Break Point has been recognized as a key habitat for this species since the late 1800s, and it is still a seasonally important sperm whale environment (Stanistreet et al., 2018; NMFS, 2021, 2024). In a study that used passive acoustic monitoring (PAM) to record sperm whales along the U.S. east coast, a site located within the Cape Hatteras Shelf Break Point had the highest daily presence of sperm whales of any recording site, with sperm whale clicks present on 65% of the 734 recording days (Stanistreet et al., 2018). Sperm whale vocalizations also displayed a seasonal pattern: significantly more clicks were present during winter than other seasons, although clicks were also present at intermediate levels during the spring and summer (Stanistreet et al., 2018). Presence was lowest in the fall. These trends were evident across multiple years of recording (Stanistreet et al., 2018).

Criterion C: Key Life Cycle Activities

Sub-criterion C2: Feeding Areas

The significant aggregations of beaked whales at Cape Hatteras Shelf Break Point may be tied to the bathymetric features (submarine canyons, steep continental slopes) and oceanographic features (confluence of currents, presence of fronts and eddies) of this site that concentrate prey (Foley et al., 2021). Goose-beaked whales (*Ziphius cavirostris*) predominantly exhibited movement patterns that suggested foraging in this area (rather than behaviours that indicated transit, for example) (Foley et al., 2021).

The region is also an important foraging habitat for

short-finned pilot whales (*Globicephala macrorhynchus*), with high densities of whales located just off the shelf break within the Cape Hatteras Shelf Break Point IMMA and tagged individuals repeatedly returning to this area (Thorne et al., 2017). Density here is predicted to be especially high during winter and early spring, when cool water temperatures in Mid-Atlantic Bight waters further north discourage foraging by this species (Thorne et al., 2019; Adamczak et al., 2020). Short-finned pilot whales often forage at depths of 200–1,000 m, concentrating their efforts close to the shelf break and within submarine canyons (Thorne et al., 2017; Stepanuk et al., 2018). Both habitats likely provide enhanced foraging opportunities: ocean currents interacting with the steep continental slope of the Mid-Atlantic Bight may aggregate prey, and canyon upwellings can advect prey into shallower waters (Thorne et al., 2017).

The Cape Hatteras Shelf Break Point also serves as a foraging habitat for small delphinoids, particularly the Western North Atlantic Offshore stock of bottlenose dolphins (*Tursiops truncatus truncatus*) (Schick et al., 2011; Stepanuk et al., 2018).

Criterion D: Special Attributes

Sub-criterion D2: Diversity

The exceptional oceanographic features present at the Cape Hatteras Shelf Break Point, along with the convergence of the distinct biogeographic zones of the Mid-Atlantic Bight to the north, and the South Atlantic Bight to the south, support abundant populations of marine mammals and high biodiversity.

Sightings data collected during shipboard surveys conducted by the United States National Marine Fisheries Service (NMFS) and results of habitat-based density models developed by scientists at Duke

University in 2016 and updated in 2023 using survey data collected in 2022, 20 species of cetaceans expected to occur regularly within this relatively small area (NMFS, 2021, 2022, 2023, 2024; Roberts et al., 2016, 2023). The Duke University habitat-based density models combine multiple sources of systematic survey data and are considered among the best available scientific information available on cetacean density in the United States. The models are particularly informative in the case of the Cape Hatteras Shelf Break Point as it is a relatively under-surveyed offshore area.

These 20 species are: minke whales (*Balaenoptera acutorostrata*), fin whales, short-beaked common dolphins (*Delphinus delphis*), short-finned pilot whales, Risso's dolphins (*Grampus griseus*), Northern bottlenose whales (*Hyperoodon ampullatus*), Fraser's dolphins (*Lagenodelphis hosei*), Humpback whales (*Megaptera novaeangliae*; sightings only, NMFS, 2024), Gervais's beaked whales, melon-headed whales (*Peponocephala electra*), sperm whales, false killer whales (*Pseudorca crassidens*), pantropical spotted dolphins (*Stenella attenuata*), clymene dolphins (*Stenella clymene*), striped dolphins (*Stenella coeruleoalba*), Atlantic spotted dolphins (*Stenella frontalis*), spinner dolphins (*Stenella longirostris*), rough-toothed dolphins (*Steno bredanensis*), common bottlenose dolphins, and goose-beaked whales.

Six other species have been less frequently documented in the area and/or are predicted to occur at lower relative densities by the Roberts et al. habitat-based density model. These species are blue whales (*Balaenoptera musculus*), North Atlantic right whales (*Eubalaena glacialis*), pygmy killer whales (*Feresa attenuata*), pygmy sperm whales (*Kogia breviceps*), dwarf sperm whales (*Kogia sima*), and killer whales (*Orcinus orca*).

Additional evidence of the region's outstanding

marine mammal diversity is provided by strandings data. During systematic monitoring and analysis of strandings data from 1997 through 2008, 1,847 strandings of marine mammals from nine families and 34 species were reported along 537 km of coastline adjacent to this IMMA (Byrd et al., 2014). This number of species was larger than that documented for strandings in other areas of the world such as northwest Spain, San Diego, southeastern Canada, and Cape Cod (Byrd et al., 2014). In western Australia, the same number of species was found, but the research area included 12,889 km of coastline (Byrd et al., 2014). While the geographic origin of these strandings is not known and cannot be definitively linked to this relatively small, offshore IMMA, these findings provide general support to the richness of marine mammal species in the area, a fact that is also supported by relatively high diversity of the area compared to other parts of the Mid-Atlantic Bight and South Atlantic Bight (excluding the more productive Northeast region; Hodge et al., 2022).

Supporting Information

Andres, M., Muglia, M., Bahr, F., and Bane, J. 2018. 'Continuous flow of upper Labrador sea water around Cape Hatteras'. *Sci Rep.*, 8(1):4494. Available at: [doi:10.1038/s41598-018-22758-z](https://doi.org/10.1038/s41598-018-22758-z).

Bisagni, J.J., Kim, H.S. and Chaudhuri, A. 2009. 'Interannual variability of the shelf-slope front position between 75° and 50° W'. *Journal of Marine Systems*, 78(3):337–350. Available at: [doi:10.1016/j.jmarsys.2008.11.020](https://doi.org/10.1016/j.jmarsys.2008.11.020).

Blake, J.A. and Hilbig, B. 1994. 'Dense infaunal assemblages on the continental slope off Cape Hatteras, North Carolina'. *Deep Sea Research Part II: Topical Studies in Oceanography*, 41(4–6):875–899. Available at: [doi:10.1016/0967-0645\(94\)90052-3](https://doi.org/10.1016/0967-0645(94)90052-3).

Byrd, B.L., Hohn, A.A., Lovewell, G.N., Altman, K.M., Barco, S.G., Friedlaender, A., Harms, C.A., McLellan, W.A., Moore, K.T., Rosel, P.E. et al. 2014. 'Strandings as indicators of marine mammal biodiversity and human interactions off the coast of North Carolina'. *FB*, 112(1):1–23. Available at: doi:10.7755/FB.112.1.1.

Churchill, J.H. and Berger, T.J. 1998. 'Transport of Middle Atlantic Bight shelf water to the Gulf Stream near Cape Hatteras'. *J Geophys Res.*, 103(C13):30605–30621. Available at: doi:10.1029/98JC01628.

Churchill, J.H. and Gawarkiewicz, G. 2009. 'Shelfbreak frontal eddies over the continental slope north of Cape Hatteras'. *J Geophys Res.*, 114(C2):C02017. Available at: doi:10.1029/2007JC004642.

Churchill, J.H. and Gawarkiewicz, G.G. 2012. 'Pathways of shelf water export from the Hatteras shelf and slope: pathways of shelf water export'. *J Geophys Res.*, 117(C8):n/a-n/a. doi:10.1029/2012JC007995.

Churchill, J.H. and Gawarkiewicz, G.G. 2014. 'Shelf water and chlorophyll export from the Hatteras slope and outer shelf'. *J Geophys Res Oceans.*, 119(7):4291–4304. Available at: doi:10.1002/2014JC009809.

Cooke, J.G. 2018. '*Balaenoptera physalus*'. *The IUCN Red List of Threatened Species* 2018: Available at: e.T2478A50349982. <https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2478A50349982.en>. (Accessed: 15 December 2024).

Davis, G.E., Baumgartner, M.F., Bonnell, J.M., Bell, J., Berchok, C., Bort Thornton, J., Brault, S., Buchanan, G., Charif, R.A., Cholewiak, D. et al. 2017. 'Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (*Eubalaena glacialis*) from 2004 to 2014'. *Sci Rep.*, 7(1):13460. Available at: doi:10.1038/s41598-017-13359-3.

Federal ocean partnership launches DEEP SEARCH study of coral, canyons, and seeps off the Mid- and South Atlantic coast. 2017. Reston (VA): Department of the Interior, U.S. Geological Survey. Available at: <https://www.usgs.gov/news/federal-ocean-partnership-launches-deep-search-study-coral-canyons-and-seeps-mid-and-south>.

Foley, H., Pacifici, K., Baird, R., Webster, D., Swaim, Z., and Read, A. 2021. 'Residency and movement patterns of goose-beaked whales *Ziphius cavirostris* off Cape Hatteras, North Carolina, USA'. *Mar Ecol Prog Ser.*, 660:203–216. Available at: doi:10.3354/meps13593.

Gardner, J.V., Armstrong, A.A. and Calder, B.R. 2016. 'Hatteras Transverse Canyon, Hatteras Outer Ridge and environs of the U.S. Atlantic margin: A view from multibeam bathymetry and backscatter'. *Marine Geology*, 371:18–32. Available at: doi:10.1016/j.margeo.2015.10.015.

Gawarkiewicz, G. and Linder, C.A. 2006. 'Lagrangian flow patterns north of Cape Hatteras using near-surface drifters'. *Progress in Oceanography*, 70(2–4):181–195. Available at: doi:10.1016/j.pocean.2006.03.020.

Gawarkiewicz, G., Churchill, J., Bahr, F., Linder, C., and Marquette, C. 2008. 'Shelfbreak frontal structure and processes north of Cape Hatteras in winter'. *J Mar Res.*, 66(6):775–799. Available at: doi:10.1357/002224008788064595.

Grothues, T.M. and Cowen, R.K. 1999. 'Larval fish assemblages and water mass history in a major faunal transition zone'. *Continental Shelf Research*, 19(9):1171–1198. Available at: doi:10.1016/S0278-4343(99)00010-2.

Grothues, T.M., Cowen, R.K., Pietrafesa, L.J., Bignami,

F., Weatherly, G.L., and Flagg, C.N. 2002. 'Flux of larval fish around Cape Hatteras'. *Limnol Oceanogr.*, 47(1):165–175. Available at: doi:10.4319/lo.2002.47.1.0165.

Hodge, B.C., Pendleton, D.E., Ganley, L.C., O'Brian, O., Kraus, S.D., Quintana-Rizzo, E., and Redfern, J. 2022. 'Identifying predictors of species diversity to guide designation of marine protected areas'. *Conservation Science and Practice*, e12665. Available at: <https://conbio.onlinelibrary.wiley.com/doi/10.1111/csp2.12665>.

Lesage, V., Gavrilchuk, K., Andrews, R., and Sears, R. 2017. 'Foraging areas, migratory movements and winter destinations of blue whales from the western North Atlantic'. *Endang Species Res.*, 34:27–43. Available at: doi:10.3354/esro0838.

Lozier, M.S. and Gawarkiewicz, G. 2001. 'Cross-frontal exchange in the Middle Atlantic Bight as evidenced by surface drifters'. *J Phys Oceanogr.*, 31(8):2498–2510. Available at: doi:10.1175/15200485(2001)031<2498:CFEITM>2.0.CO;2.

McLellan, W.A., McAlarney, R.J., Cummings, E.W., Read, A.J., Paxton, C.G.M., Bell, J.T., and Pabst, D.A. 2018. 'Distribution and abundance of beaked whales (Family Ziphiidae) off Cape Hatteras, North Carolina, U.S.A'. *Mar Mam Sci.*, 34(4):997–1017. Available at: doi:10.1111/mms.12500.

Morrison, C. 2018. North Carolina submarine canyons. National Oceanic and Atmospheric Administration ocean exploration. Available at: <https://oceanexplorer.noaa.gov/explorations/18deepsearch/background/canyons/canyons.html>.

Mullaney, C.B. The Point. Discussion of features and identification of boundaries for the area offshore of

Cape Hatteras, North Carolina. Submitted to the Natural Resources Defense Council (Oct. 4, 2021). Unpublished.

NMFS [U.S. National Marine Fisheries Service]. 2021. Atlantic Marine Assessment Program for Protected Species: FY15–FY19. OCS-Study BOEM 2021-051. Available at: https://repository.library.noaa.gov/view/noaa/47287/noaa_47287_DS1.pdf.

NMFS [U.S. National Marine Fisheries Service]. 2022. 2021 annual report of a comprehensive assessment of marine mammal, marine turtle, and seabird abundance and spatial distribution in US waters of the Western North Atlantic Ocean: AMAPPS III. Available at: <https://doi.org/10.25923/jazw-5467>.

NMFS [U.S. National Marine Fisheries Service]. 2023. 2022 annual report of a comprehensive assessment of marine mammal, marine turtle, and seabird abundance and spatial distribution in US waters of the Western North Atlantic Ocean: AMAPPS III. Available at: <https://doi.org/10.25923/keoy-a251>.

NMFS [U.S. National Marine Fisheries Service]. 2024. 2023 annual report of a comprehensive assessment of marine mammal, marine turtle, and seabird abundance and spatial distribution in US waters of the Western North Atlantic Ocean: AMAPPS III. Available at: <https://doi.org/10.25923/11cy-oj88>.

Rasmussen, L.L. 2005. 'Slope water, Gulf Stream, and seasonal influences on southern Mid-Atlantic Bight circulation during the fall-winter transition'. *J Geophys Res.*, 110(C2):C02009. Available at: doi:10.1029/2004JC002311.

Risch, D., Castellote, M., Clark, C.W., Davis, G.E., Dugan, P.J., Hodge, L.E., Kumar, A., Lucke, K., Mellinger, D.K., Nieuirk, S.L., et al. 2014. 'Seasonal

migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring networks'. *Mov Ecol.*, 2(1):24. Available at: doi:10.1186/s40462-014-0024-3.

Roberts, J.J., Best, B.D., Mannocci, L., Fujioka, E.I., Halpin, P.N., Palka, D.L., Garrison, L.P., Mullin, K.D., Cole, T.V., Khan, C.B., and McLellan, W.A. 2016. 'Habitat-based cetacean density models for the US Atlantic and Gulf of Mexico'. *Scientific reports*, 6(1):22615. Available at:

<https://www.nature.com/articles/srep22615.pdf>.

Roberts, J.J., Yack, T.M. and Halpin, P.N. 2022. Marine mammal density models for the US Navy Atlantic Fleet Training and Testing (AFTT) study area for the Phase IV Navy Marine Species Density Database (NMSDD). Document version. 2023:1. Available at: https://seamap.env.duke.edu/seamap-models-files/Duke/Reports/AFTT_Marine_Mammal_Density_Models_2022_v1.3.pdf.

Rulifson, R.A., Bangley, C.W., Cudney, J.L., Dell'Apa, A., Dunton, K.J., Frisk, M.G., Loeffler, M.S., Balazik, M.T., Hager, C., Savoy, T. et al. 2020. 'Seasonal presence of Atlantic sturgeon and sharks at Cape Hatteras, a large continental shelf constriction to coastal migration'. *Mar Coast Fish.*, 12(5):308–321. Available at: doi:10.1002/mcf2.10111.

Savidge, D.K. 2002. 'Wintertime shoreward near-surface currents south of Cape Hatteras'. *J Geophys Res.*, 107(C11):3205. Available at: doi:10.1029/2001JC001193.

Savidge, D.K. and Austin, J.A. 2007. 'The Hatteras Front: August 2004 velocity and density structure'. *J Geophys Res.*, 112(C7):C07006. Available at: doi:10.1029/2006JC003933.

Savidge, D.K., Austin, J.A. and Blanton, B.O. 2013a.

'Variation in the Hatteras Front density and velocity structure part 1: high resolution transects from three seasons in 2004–2005'. *Continental Shelf Research*, 54:93–105. Available at: doi:10.1016/j.csr.2012.11.005.

Savidge, D.K., Austin, J.A. and Blanton, B.O. 2013b. 'Variation in the Hatteras Front density and velocity structure part 2: historical setting'. *Continental Shelf Research*, 54:106–116. Available at: doi:10.1016/j.csr.2012.11.006.

Savidge, D.K. and Savidge, W.B. 2014. 'Seasonal export of South Atlantic Bight and Mid-Atlantic Bight shelf waters at Cape Hatteras'. *Continental Shelf Research*, 74:50–59. Available at: doi:10.1016/j.csr.2013.12.008.

Schaff, T., Levin, L., Blair, N., DeMaster, D., Pope, R., and Boehme, S. 1992. 'Spatial heterogeneity of benthos on the Carolina continental slope: large (100 km)-scale variation'. *Mar Ecol Prog Ser.*, 88:143–160. Available at: doi:10.3354/meps088143.

Schick, R., Halpin, P., Read, A., Urban, D., Best, B., Good, C., Roberts, J., LaBrecque, E., Dunn, C., Garrison, L. et al. 2011. 'Community structure in pelagic marine mammals at large spatial scales'. *Mar Ecol Prog Ser.*, 434:165–181. Available at: doi:10.3354/meps09183.

Shearer, J.M., Quick, N.J., Cioffi, W.R., Baird, R.W., Webster, D.L., Foley, H.J., Swaim, Z.T., Waples, D.M., Bell, J.T., and Read, A.J. 2019. 'Diving behaviour of goose-beaked whales (*Ziphius cavirostris*) off Cape Hatteras, North Carolina'. *R Soc open sci.*, 6(2):181728. Available at: doi:10.1098/rsos.181728.

Stanistreet, J.E., Nowacek, D.P., Baumann-Pickering, S., Bell, J.T., Cholewiak, D.M., Hildebrand, J.A., Hodge, L.E.W., Moors-Murphy, H.B., Van Parijs, S.M., Read, A.J. 2017. 'Using passive acoustic monitoring to document the distribution of beaked whale species in the

western North Atlantic Ocean'. *Can J Fish Aquat Sci.*, 74(12):2098–2109. Available at: doi:10.1139/cjfas-2016-0503.

Stanistreet, J., Nowacek, D., Bell, J., Cholewiak, D., Hildebrand, J., Hodge, L., Van Parijs, S., and Read, A. 2018. 'Spatial and seasonal patterns in acoustic detections of sperm whales *Physeter macrocephalus* along the continental slope in the western North Atlantic Ocean'. *Endang Species Res.*, 35:1–13. Available at: doi:10.3354/esr00867.

Stepanuk, J.E.F., Read, A.J., Baird, R.W., Webster, D.L., and Thorne, L.H. 2018. 'Spatiotemporal patterns of overlap between short-finned pilot whales and the U.S. pelagic longline fishery in the Mid-Atlantic Bight: An assessment to inform the management of fisheries bycatch'. *Fisheries Research*, 208:309–320. Available at: doi:10.1016/j.fishres.2018.07.008.

Taylor, B.L., Baird, R., Barlow, J., Dawson, S.M., Ford, J., Mead, J.G., Notarbartolo di Sciara, G., Wade, P. and Pitman, R.L. 2019. '*Physeter macrocephalus* (amended version of 2008 assessment)'. *The IUCN Red List of Threatened Species* 2019: Available at: e.T41755A160983555. <https://dx.doi.org/10.2305/IUCN.N.UK.2008.RLTS.T41755A160983555.en>. (Accessed: 15 December 2024).

Thorne, L., Foley, H., Baird, R., Webster, D., Swaim, Z., and Read, A. 2017. 'Movement and foraging behavior of short-finned pilot whales in the Mid-Atlantic Bight: importance of bathymetric features and implications for management'. *Mar Ecol Prog Ser.*, 584:245–257. Available at: doi:10.3354/meps12371.

Thorne, L.H., Baird, R.W., Webster, D.L., Stepanuk, J.E., and Read, A.J. 2019. 'Predicting fisheries bycatch: A case study and field test for pilot whales in a pelagic longline fishery'. *Embling C, editor. Divers Distrib.*, 25(6):909–923. Available at: doi:10.1111/ddi.12912.

Todd, R.E. 2020. 'Export of Middle Atlantic Bight shelf waters near Cape Hatteras from two years of underwater glider observations'. *J Geophys Res Oceans*, 125(4). Available at: doi:10.1029/2019JC016006. [accessed 2021 Jun 25]. <https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JC016006>.

Acknowledgements

We would like to thank the participants of the 2024 IMMA Regional Expert Workshop for the identification of IMMAs in the North West Atlantic Ocean and wider Caribbean region. Funding for the identification of this IMMA was provided by the Water Revolution Foundation, with additional funding and collaboration from the Sargasso Sea Commission, OceanCare and Animal Welfare Institute. Essential administrative support was given by Tethys Research Institute and Whale and Dolphin Conservation.

